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Abstract Using the stochastic paths perturbation approach analytic individual realizations
of a stochastic Verhulst model are introduced. The escape of the unstable state is studied for
any kind of noise from these individual realizations. We infer from these paths the statistics
of the first passage time distribution invoking the solution of an explicit equation with a
random coefficient. A stochastic population Verhulst’s dynamics with small perturbations
of the Wiener class is explicitly worked out. The method can also be implemented for other
type of stochastic perturbations like Poisson-noise (shot white pulses), etc.

Keywords Population dynamics · Stochastic Verhulst model · First passage time

1 Introduction

1.1 The Stochastic Path Perturbation Approach

Nonlinear systems far from equilibrium exhibit a variety of instabilities when the appropriate
control parameters are changed [1]. By such changes of the control parameters the system
can be placed in an unstable state [2]. The system, in general, will relax to a metastable (or
global) stationary state [3]. This transient process is triggered by any noise of amplitude ε,
while the statistical description of such a transient constitutes one of the main subjects of
nonequilibrium statistical mechanics [4–6]. A detailed description of the relaxation process
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depends on the nature of the instability involved [7–9]. Unstable states appear in first-order-
like instabilities at the end point of hysteresis cycles. Typical cases are those possessing in
the order parameter the symmetry transformation n → −n in the relaxation from n = 0.
In particular, when there is such an inversion symmetry, a theory for the relaxation at a
subcritical pitchfork bifurcation has recently been introduced quite successfully [7]. That
approach is based on the fact that each stochastic path (up to O(

√
ε)) can be approximated

systematically with a suitable perturbation on the deterministic one. Therefore the lifetime
from an unstable state, can be studied in terms of random escape times te , which in fact, are
governed by those approximated stochastic paths (quasideterministic paths [4]). That theory
allows us, in principle, to find the lifetime of any unstable state (i.e.: the passage time to some
macroscopic value n ≈ O(1)) [10, 11]. The lack of an initial Gaussian regime does not pose
any restriction for determining the statistical properties of the lifetime from an unstable state
[7].

Here we use this Stochastic Path Perturbation Approach (SPPA) for tackling the problem
of the passage times statistics in a population dynamics model, and we specially focus on the
analytic expression for the First Passage Time Distribution (FPTD). Thus all the moments of
the passage time can easily be calculated. We point out that in general the time-scale char-
acterizing the escape from the instability, is the lifetime of the state calculated as the Mean
First Passage Time (MFPT). Also the study of the transient relaxation of the system, i.e.: the
anomalous fluctuations of the phase space variable (the moments of the order parameter)
can analytically be calculated introducing an instanton-like approximation [7, 12], this will
be done in Sect. 2.5.

When the perturbation on some deterministic dynamics is a Gaussian white noise, the
standard theory of continuous stochastic processes gives the FPTD by solving the corre-
sponding adjoint Fokker-Planck operator [13–15]. The problem presented here is the char-
acterization of the time-scale of the escape process by looking at each stochastic realization
of the stochastic dynamics. In this way we are going to define a random escape time, te ,
as the random time when the amplitude (population size) n(t) reaches a given threshold.
This means that the escape time te = te(Ω) is going to be a function of a random number,
Ω , which will be correctly characterized by a certain probability measure P (Ω). Then, in
principle, all the moments of te can be calculated by taking the mean value over P (Ω). This
picture has the advantage over the usual Fokker-Planck technique because it displays the
existence of the relevant physical universal parameter of the system in a very direct way.
On the other hand, the SPPA picture allows the analytic calculation of the FPTD P (te) as a
perturbation in the small noise intensity

√
ε.

The FPTD is obtained from the use of the transformation of the random variable theorem,
and it will be shown to be a non-symmetric broad distribution peaked around the most
probable value. Verhulst’s population model with small perturbations of the Wiener class
is explicitly worked out. The present method can also be implemented for other type of
stochastic perturbations like Poisson-noise (shot white pulses), Dichotomic-noise [14, 15],
etc. this is pointed out Sect. 3.

2 Application to Population Dynamics: the Logistic Model

Biological problems in which fluctuations are important to be consider are for example in
models of population dynamics. In order to apply our SPPA to study the time-scales in a
population dynamics system, we consider here the Verhulst model

dn

dt
= r

(
1 − n

K

)
n, n(t) > 0, ∀t ≥ 0, (1)



Passage Time Statistics in a Stochastic Verhulst Model 489

where K is the maximum population that a given amount of food can support, and r the
net growth rate per individual [13]. Equation (1) can be integrated and its solution is the
so-called logistic curve which has a characteristic S-like shape. In this deterministic case
the typical time-scale is td ∼ 1/r, nevertheless a more realistic model is needed to represent
the fact that in a real experiment the characteristic time-scale, i.e., the instant when the
population size n(t) is of macroscopic order O(K), is a random time. A more realistic
description can be obtained if we generalize the deterministic evolution (1) by a stochastic
one adding small fluctuations in the form of a Stochastic Differential Equation (SDE)

dn

dt
= r

(
1 − n

K

)
n + √

ε ξ(t), (2)

here
√

ε characterizes the size of the fluctuations of any arbitrary noise ξ(t), which must
be a bounded process in such a way to assure that each realization of the stochastic process
n(t) fulfills n(t) > 0, ∀t ≥ 0.

Following the SPPA we introduce for the present model the transformation

n = Z

Y θ
, then ṅ = Ż

Y θ
− θ

ZẎ

Y θ+1
.

From this it is simple to see that we can chose two SDE of the form

Ż = rZ + √
εY θξ,

−θ
ZẎ

Y
= − r

K

Z2

Y θ
.

Taking θ = 1 we get two SDE that can easily be iterated

Ż = rZ + √
εY ξ, (3)

Ẏ = r

K
Z. (4)

2.1 The Deterministic Case

The deterministic solution can be reobtained from (3) and (4) taking
√

ε = 0. In this case
we get

Z(t) = Z0e
rt ,

Y (t) − Y0 = rZ0

K

∫ t

0
ersds = rZ0

K

(
ert − 1

r

)
.

Then we arrive to the well known logistic S-like shape

n(t) = Z(t)

Y (t)
= K

( K
n0

− 1) exp (−rt) + 1
, n0 ≡ Z0

Y0
, K > n0, t ≥ 0. (5)

This solution shows that at the deterministic time td = 1
r

ln( K
n0

− 1), when ṅ(t) is maximum,
the population size is n(td) = K/2.
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2.2 The Stochastic Paths to O(
√

ε)

These paths can be obtained from (3) and (4) iterating two times. From now on we will be
interested only in the transition O(

√
ε) to O(K) in the phase space variable n(t). Therefore

consider the initial conditions Z(0) = 0 and Y (0) = 1, then from (3) we get, to O(
√

ε)

Z(t) 	 √
εert

∫ t

0
e−rsξ(s)ds ≡ √

εerth(t), t ≥ 0, (6)

where we have defined a new stochastic process h(t) ≡ ∫ t

0 e−rsξ(s)ds ≥ 0, which is solution
of the SDE:

ḣ(t) = e−rt ξ(t), h(0) = 0, t ≥ 0. (7)

Using the short-time solution (6) in (4) and iterating for Y (t) we get, to O(
√

ε)

Y (t) − Y (0) 	 r

K

∫ t

0
Z(s)ds = r

√
ε

K

∫ t

0
ersh(s)ds,

which means that we can write for the stochastic path n(t) = Z(t)/Y (t) the representation

n(t) 	
√

εh(t) exp(rt)

1 + r
√

ε

K

∫ t

0 ersh(s)ds
, t ≥ 0. (8)

It is important to note that even when the correlation function of the arbitrary process
ξ(t) could be white, the stochastic process h(t) saturates at long time (t 
 r−1), then we
can approximate the paths (8) in the form:

n(t) 	
√

εh(∞) exp(rt)

1 + r
√

ε

K
h(∞)

∫ t

0 ersds
= K

( K√
εh(∞)

− 1) exp (−rt) + 1
, t ≥ 0. (9)

Formula (9) gives the stochastic paths we were looking for as a mapping from the random
number h(∞). This solution gives an accurate representation of the paths for short and
intermediate times, except for the small fluctuations around the final steady state n(∞) = K,

i.e., in the long-time limit t → ∞.

At intermediate times, the random scape times te (when the stochastic paths leave the
initial domain O(

√
ε) and fall into the attractor of the saturation valley) can be obtained by

inverting t from (9). To O(
√

ε) we get

(
K√

εh(∞)
− 1

)
exp (−rte) ∼ 1, (10)

then from (10) we can write asymptotically for small noise

te = 1

r
log

(
K√
εΩ

)
, te ≥ 0, (11)

where we have used the notation Ω ≡ h(∞), here we emphasize that this random variable
must have a positive support. This formulae teaches us that the MFPT is just given by the
mean value 〈te〉 over the distribution of the random variable Ω (into a suitable support to
assure the positivity of te).
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In order to obtain the probability density of the escape times P (te) (i.e., the probability
that amplitude n(t) reaches a given threshold, O(K), between te and te + dte), we begin
with the relation between Ω and te expressed in (11). Assuming that P (Ω) is known and
using the transformation of the random variables theorem [14, 15], it is possible to calculate
the FPTD P (te) as:

P (te) =
∫

δ (te − te [Ω])P (Ω)dΩ.

Note that in this case the supports of Ω and te do not correspond to each other. Due to the
fact that the transformation (11) has a single-value inverse and using that | dΩ

dte
| = rΩ , we

write

P (te) = 1

N
rK√

ε
exp(−rte)P

(
Ω = K exp(−rte)√

ε

)
, te ∈ (0,∞), (12)

where N is a normalization constant. Therefore our the next task is to characterize the
probability measure P (Ω).

In order to compare the probability density P (te) against a numerical simulation of the
escape times, we need to specify the threshold for the amplitude n(te). We have carried out
simulations from the SDE (2) taking n(te) = K/2 and considering that ξ(t) is a Gaussian
white noise, see Appendix A. Comparing with the simulations we have seen that the approx-
imation described above has a small systematic underestimation of the escape times [7, 11].
To solve this issue we introduce a simple redefinition of the constant K in our approach.
Denoting by Zj(t), Yj (t) the j th-iteration in the SPPA we know from the first iteration,
equation (6), that the escape process is controlled by the linear regime, then at the escape
time te the size of the amplitude n(t) = Z(t)/Y (t) will be asymptotically, for small noise

n(t) ∼ Z0(t)

Y0(t)
∼

√
εerth(t)

1
→ √

εΩ exp(−rte) ∼ O(K) = K ′. (13)

From the second iteration of the SPPA we know that the amplitude n(t) is controlled by
the nonlinear deterministic evolution, see (8). Then at the scape time the size of n(te) will
asymptotically be

n(t) ∼ Z0(t)

Y1(t)
→ K

K√
εΩ

exp(−rte) + 1
∼ K

2
. (14)

Comparing (13) and (14) we get K ′ = 1
2K, giving a renormalized value for the constant

K . In this work we have carried out numerical simulations considering Heun’s algorithm
when the process ξ(t) is a Gaussian white noise (see Appendix A); Fig. 1 shows the result
of taking this procedure into account.

2.3 The Probability Distribution P (Ω) for Wiener Perturbations

The FPTD, P (te), of the amplitude n(t) can be obtained from the asymptotic statistics of the
stochastic process h(t) which is solution of the SDE (7). In order to work out the process
h(t) we have to give the statistics of the noise ξ(t). As we emphasize in previous sections our
approach can be applied to many different noises, in particular in the present section we are
going to specify ξ(t) as a zero mean Gaussian white noise. Nevertheless, even in this case
we have to work out the Gaussian case with care because we need to assure that the process
h(t) must have positive realizations. This can be done by introducing reflecting boundary
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Fig. 1 Plots of the FPTD given
in (24), P(τe), coming from the
present SPPA for a Gaussian
noise perturbation, as a function
of τe = rte for K̃ ≡ K

√
r/ε

(= 10,103,105), where we have
used the renormalized value
K ′ = 1

2 K̃ . The dotted curves
represent the Monte Carlo
simulations of the SDE (2) with
K = r = 1, for three different
values of the noise amplitude ε

(= 10−2,10−6,10−10), having
reached n(t) = K/2 for the first
time. Details of the numerical
simulation are given in
Appendix A

condition in Wiener integrals. Note that the method of image can also be used when working
with non-Gaussian noises if we know its corresponding characteristic function [16].

Using ξ(t)dt = dW(t) we can write the unbounded solution of (7) in the form
∫

dh0(t) =
∫

e−rsdW(s), (15)

where dW(t) is a Wiener differential with zero mean value. As we have noted in (6) we are
interested in the initial condition Z(0) = 0. Using the properties of the Wiener integral we
can calculate any moment of the unbounded process h0(t). In particular, because h0(t) is
Gaussian, to calculate the 1-time probability distribution P (h0, t) we only need the first and
second moment of h0(t). From (15) we get

〈h0(t)〉 = 0,
(16)

〈h0(t)
2〉 = 1

2r
[1 − exp(−2rt)] ≡ σ 2(t), t ≥ 0.

Then the 1-time probability distribution of the unbounded process h0(t) is given by

P (h0, t) = 1√
2πσ 2(t)

exp

(
− h2

0

2σ 2(t)

)
, h0 ∈ (−∞,∞), t ≥ 0. (17)

To assure that the stochastic process h(t), appearing in (8), has positive realizations we
now use the method of image to built up a stochastic process fulfilling this condition. The
constructions of these bounded realizations h(t) follows by the use of a negative mirror
image (around the origin) of the positive one. Using that the initial condition is h(0) = 0,
from a corollary of theorem 2 of Ref. [16] we finally get

P (h, t) = 1

π

∫ ∞

−∞
cos(kh) exp

(
−σ 2(t)k2

2

)
dk, (18)

then

P (h, t) =
√

2√
πσ 2(t)

exp

(
− h2

2σ 2(t)

)
, h ∈ (0,∞), t ≥ 0, (19)
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this formula gives P (Ω) in the limit P (h, t → ∞).

From this expression we immediately can calculate the generating function of h(t) for a
fixed time t

Gh(λ) =
∫ ∞

0
e−hλP (h, t)dh

= erfc[λσ(t)/
√

2] exp(λ2σ 2(t)/2). (20)

Then the 1-time moments are given by 〈hm(t)〉 = (−1)mdmGh(λ)/dλm|λ=0, m = 1,2,3 . . . ,

for example

〈h(∞)〉 =
√

2

π
σ(t = ∞) = 1√

πr
.

In addition from the generating function, Gh(λ), any inverse moment of h(t) can be
calculated by quadrature in the form

〈
1

hν(t)

〉
= 1

�(ν)

∫ ∞

0
Gh(λ)λν−1dλ, ν > 0, (21)

then, for example it is simple to see that 〈 1
hν (t)

〉 �= ∞ only for fractional inverse moments
with ν < 1.

2.4 The FPTD for Verhulst’s Model with Wiener Perturbations

Here we are interested in the long-time limit of the process h(t), which allow us to write the
statistical properties of the random variable h(∞). From (19) and σ 2(t = ∞) ≡ 1/2r we get

P (Ω) = 2

√
r

π
exp(−rΩ2), Ω ∈ (0,∞). (22)

Formula (22) completes the description of the FPTD for our logistic dynamics (2) perturbed
with bounded Gaussian fluctuations of intensity

√
ε. In fact, to the dominant O(

√
ε), using

(12) the distribution of the random scape times te is given by

P (te) = 2K

N
r3/2 exp(−rte)√

πε
exp

(
−K2 exp(−2rte)

ε/r

)
, te ∈ (0,∞). (23)

Note that this formula has only one important universal parameters K̃ ≡ K
√

r/ε, there-
fore introducing the change of variable τe ≡ rte we obtain a universal dimensionless expres-
sion for the FPTD

P (τe) = 2K̃

erf(K̃)
√

π
exp[−τe − K̃2 exp(−2τe)], K̃ ≡ K

√
r/ε, τe ≡ rte. (24)

Figure 1 depicts the P (τe) curves for different values of K̃ (= 10,103,105). Note that
these functions are plotted considering the renormalization procedure, see (13) and (14), i.e.,
using 1

2 K̃. Also the corresponding Monte Carlo simulations are shown for the same set of
parameters, i.e., we use K = r = 1 and change the noise amplitude ε (= 10−2,10−6,10−10).
The agreement is very good even for the case of large noise (which corresponds to small
K̃).
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In particular from (24) the lifetime of our perturbed Verhulst’s model, i.e., the MFPT for
the stochastic logistic dynamics, is asymptotically for small noise given by

〈τe〉 =
∫ ∞

0
τeP (τe)dτe 	 ln

(
1

2
K̃

)
+ E + ln 4

2 erf( 1
2 K̃)

, K̃ 
 1, (25)

here E = 0.577215 . . . is the Euler constant and we have introduced the renormalized value
1
2 K̃ . This formula gives agreement, even in the case of small K̃, when compared with the
numerical simulations of the lifetime. For the particular set of parameters {K = 1, r = 1}
used in figure 1, we made the following table:

∥∥∥∥∥∥
ε = 10−2 ε = 10−6 ε = 10−10

〈τe〉 2.59 7.19 11.80
〈τe〉MC 2.52 7.35 11.97

∥∥∥∥∥∥ .

These values show the good accuracy of formula (25) with the lifetime evaluated from the
Monte Carlo simulations. In addition to this check we have performed a goodness of fit test
for our theoretical distribution function P (τe), this can be seen in Appendix B.

2.5 Transient Fluctuations with Wiener Perturbations

From the approximate paths (9), defining N(t) = n(t)/K we can write to O(
√

ε)

N(t) = 1

( K√
εΩ

− 1) exp(−rt) + 1
, t ≥ 0. (26)

Introducing the dimensionless units of time τ = rt the mean value of the population size
can be calculated using the distribution P (Ω), from (22) we get

〈N(τ)〉 = 2

√
r

π

∫ ∞

0

exp(−rΩ2)dΩ

( K√
εΩ

− 1)e−τ + 1
, τ ≥ 0

= 2eτ

√
πK̃

∫ ∞

0

x exp(−x2)dx

1 + αx/K̃
, α ≡ eτ − 1, K̃ ≡ K

√
r/ε.

Then for any time τ (except in the limit τ → ∞) this expression gives an asymptotic accu-
rate series representation for the growth of the mean population size

〈N(τ)〉 = 2eτ

√
πK̃

∞∑
n=0

(−α

K̃

)n ∫ ∞

0
xn+1e−x2

dx,
α

K̃
< 1

= eτ

√
πK̃

∞∑
n=0

[(
1 − eτ

K̃

)2n

n! + √
π

(
1 − eτ

K̃

)2n+1
(2n + 1)!!

2m+1

]
.

In general the anomalous transient fluctuation in the phase space variable is defined as
the mean quadratic deviation of the N(t) process [2]:

σ 2
N(τ) = 〈N2(τ )〉 − 〈N(τ)〉2. (27)
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To calculate analytically the anomalous fluctuation, we approximate the transient toward the
global attracting solution by introducing a crude instanton-like approximation [7, 12]

N(τ) = Θ(τ − te), the Heaviside step function, (28)

which is for τ > τe the O(1) macroscopic amplitude of the population size (characterizing
the attractor valley). Then the transient anomalous fluctuation is given by

σ 2
N(τ) = 〈Θ(τ − τe)〉 − 〈Θ(τ − τe)〉2, τ ≥ 0, (29)

where

〈Θ(τ − τe)〉 =
∫ ∞

0
Θ(τ − τe) P (τe) dτe

=
∫ τ

0
P (τe) dτe

= 1 − erf( 1
2 K̃e−τ )

erf( 1
2 K̃)

, τ ≥ 0, (30)

here (24) and the renormalized value 1
2 K̃ has been used.

In this instanton-like approximation the maximum of the function σ 2
N(τ) is at the most

probable escape value τm = ln 1
2 K̃ ∼ 〈τe〉. The function σ 2

N(τ) depicts for different values of
K̃ the qualitative behavior of the anomalous fluctuation we were looking for the present sto-
chastic Verhulst model (perturbed with Gaussian fluctuations). From the behavior of σ 2

N(τ)

we see that in the transient regime the initial fluctuations are amplified and gives rise to the
transient anomalous fluctuations of O(1) as compared with the initial or final fluctuations of
O(

√
ε).

3 On the Verhulst Model in Presence of Non-Gaussian Noise

As we emphasized in previous sections the SPPA can be applied to different noise pertur-
bations. In fact the problem of calculating the FPTD was reduced to find the probability
distribution P (Ω) associated to the long-time limit of the process h(t), which is character-
ized by (7). For any arbitrary noise, two important hypothesis were used in order to arrive
to this conclusion: first the small noise intensity O(

√
ε), second the saturation of h(t) for

times t 
 r−1. Along the paper we have also emphasized that realizations of the process
h(t) must be positive at all time, this fact can be achieved, for arbitrary noise ξ(t), by using
the method of the image if the noise ξ(t) is unbounded; see (18) for the case when working
with a Gaussian noise. In the case when the noise ξ(t) itself has positive realizations the
procedure is simpler.

Here we are going to introduce some general remarks in order to tackle the case when
the noise ξ(t) is arbitrary with positive realizations. As we mention before the problem is
reduced to find the long-time probability distribution of the SDE (7).

In [21] we have proved that knowing the generating functional of the noise Gξ([k(t)]),
the complete characterization of a process h(t), solution of the SDE

ḣ(t) = e−rt ξ(t), h(0) ≥ 0, t ≥ 0,
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is given by the functional

Gh([V (t)]) = eik0h(0)Gξ

([
e−rt

∫ ∞

t

V (s)ds

])
, (31)

where

k0 =
∫ ∞

0
V (s)ds.

Therefore, the 1-time characteristic function of the process h(t), denoted by Gh(k, t) =
〈exp ikh(t)〉, follows from evaluating the functional (31) with the test function V (s) =
kδ(s − t). From the 1-time characteristic function the probability distribution P (h, t) can be
obtained by Fourier inversion

P (h, t) = 1

2π

∫ +∞

−∞
dk exp(−ikh)Gh(k, t).

Thus the probability distribution that we are looking for is just P (Ω) = P (h,∞).
In order to exemplify this general method we consider here the case when ξ(t) is a white

Poisson noise, then its functional is [14, 15, 21]

Gξ([k(t)]) = exp

[
ρ

∫ ∞

0

{
exp

[
iAk(t ′)

] − 1
}
dt ′

]
,

where ρ represents the average number of events (pulses) per unit of time, and A is the am-
plitude of the Dirac pulses. Using (31) the functional of the process h(t) will be (considering
h(0) = 0)

Gh ([V (t)]) = exp

[
ρ

∫ ∞

0

{
exp

[
iA exp(−rt ′)

∫ ∞

t ′
V (s)ds

]
− 1

}
dt ′

]
. (32)

The 1-time characteristic function of the process h(t) driven by a Poisson noise is obtained
by using the test function V (s) = kδ(s − t) in (32)

Gh(k, t) = exp

[
ρ

∫ t

0

{
exp

[
iAk exp(−rt ′)

] − 1
}
dt ′

]
.

From this characteristic function all the 1-time moments 〈h(t)n〉 and cumulants 〈〈h(t)n〉〉 of
the process h(t) can be evaluated. For example, noting that

logGh(k, t) =
∞∑

n=1

(ik)n

n! ρAn (1 − e−nrt )

nr
≡

∞∑
n=1

(ik)n

n! 〈〈h(t)n〉〉,

we immediately prove that hypothesis 2 is fulfilled because:

σ 2
h (t) = 〈〈h(t)2〉〉 = ρA2 (1 − e−2rt )

2r
.

The 1-time probability distribution of process h(t) is expressed by quadrature as

P (h, t) = 1

2π

∫ +∞

−∞
dk exp(−ikh) exp

[
ρ

∫ t

0

{
exp

[
iAk exp(−rt ′)

] − 1
}
dt ′

]
.
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So the long-time distribution P (h, t → ∞) gives for the probability distribution P (Ω) the
expression

P (Ω) = 1

2π

∫ +∞

−∞
dk exp (−ikΩ) exp

[
ρ

∫ ∞

0

{
exp

[
iAk exp(−rt ′)

] − 1
}
dt ′

]
(33)

= 1

2π

∫ +∞

−∞
dk exp (−ikΩ) exp

[
ρ

r
{Ei (iAk) − ln (A |k|) − E}

]
, (34)

where E is the Euler constant and Ei(x) is the exponential integral function [17]. Unfortu-
nately this Fourier transform cannot be done analytically. Having P (Ω) we can characterize
the FPTD of Verhulst’s model perturbed with Poisson noise by using (34) in (12).

It should noted that only in the large scale limit Ω → ∞, the non-analytic structure ap-
pearing in (34) cancels out (considering the limit k → 0 into the integral), leading therefore
to a Gaussian asymptotic behavior in the limit Ω 
 1. Nevertheless the FPTD, see (12), is
not only controlled by this asymptotic limit, that is the reason why the study of a population
dynamics perturbed by non-Gaussian noises can be of great interest in applied biophysics.

4 Summary and Conclusions

This paper is inspired in a method developed and already successfully applied to study
relaxation from unstable and marginal states [7, 9, 11, 12, 18], and its generalized extended
normal form [19]. The first passage time distribution was obtained analytically from the
stochastic path perturbation approach. As we have noted this theory can in principle be
applied to many similar normal forms perturbed with arbitrary noises. The only restriction
is that the approximation is valid as a perturbation in the small intensity of the noise

√
ε,

thus allowing to find the characteristic “lifetimes” of the unstable state.
In (25) we give a formula for the lifetime in the case when the logistic model is perturbed

by Gaussian fluctuations. In the case when the noise perturbation is Gaussian an interest-
ing result found from the structure of the first passage time distribution P (te), is the scale
invariance property of the group K̃ . We have studied the transient anomalous fluctuation
that characterizes the transition from O(

√
ε) to O(K) in the order parameter n(t), this uni-

versal phenomenon occurs when a normal form has a saturation in its potential, i.e., there
exist a relaxation toward an attracting solution [2]. We have given a qualitative description
for the anomalous behavior of the variance σ 2

N(t) = 〈N(t)2〉 − 〈N(t)〉2 by introducing an
instanton-like approximation for the stochastic realization in the phase space, see (29).

We have explicitly found the first passage time distribution to leave the unstable state
n(0) = 0 of Verhulst’s dynamics perturbed by a positive bounded Wiener process, and com-
pare our theoretical predictions against Monte Carlo simulations. Other stochastic perturba-
tions like Poisson-noise [20, 21], Dichotomic-noise, etc. can in principle be worked out in a
similar way, see our comment after (33).

Among interesting phenomena to be studied are the population dynamics in non-
homogeneous phase space. In this situation we have to take into account the spatial depen-
dence in the order parameter n(x, t), which would appear in the definition of the stochastic
evolution (2), for example, by introducing a Laplace operator to represent migration [13].
The stochastic path perturbation approach can also be implemented to tackle this interesting
problem [19]. Using previous experience, on extended systems, work along this line is in
progress.



498 M.O. Cáceres

Acknowledgements M.O.C. thanks Dr. Carlos Ramos for helping with Monte Carlo simulations, grants
from SECTyP, Uni. Nac. Cuyo and CONICET, PIP 5063, Argentina, and his Associated Senior Scheme at
the ICTP, Trieste, Italy.

Appendix A: Monte Carlo Simulations

In the present paper we have accomplished Monte Carlo simulations of the stochastic logis-
tic equation for the case when the process ξ(t)dt = dW(t) is a Wiener differential. When
the noise perturbation is Gaussian we can use the Heun algorithm [22] that discretizes the
SDE (2):

n(ti+1) = n(ti) + h

2

[
r

(
1 − n(ti)

K

)
n(ti) + r

(
1 − n̂(ti+1)

K

)
n̂(ti+1)

]
+ √

εhWi,

with the predicator step

n̂(ti+1) = n(ti) + h

(
r

(
1 − n(ti)

K

)
n(ti)

)
+ √

εhWi.

Here, h is the time step h = ti+1 − ti , and Wi are independent Gaussian distributed random
variables with zero-mean value and variance one. These random numbers are generated
using the Box-Muller formula [15, 22]

Wi = √−2 lnλi1 cos (2πλi2) ,

where λi1 and λi2 are independent random numbers which are uniformly distributed between
0 and 1.

We recorded the escape time te at which n(te) ≥ K/2, the escape threshold for the first
time. This procedure is repeated m times to get the histograms. To obtain the results shown in
the figure 1 we have used this procedure with m = 100000 and h = 0.01, taking K = r = 1
and for three values of the noise amplitude ε.

Appendix B: The X2 Statistics and the Goodness of the Fit Test

The test for goodness of fit consists of testing the hypothesis that a given set of M observa-
tions constitutes values of a random variable with a specified distribution function. The X2

statistics is a useful measure of the discrepancy (goodness of fit) between the actual distri-
bution of a set of data points and the theoretical distribution of a random variable of which
the data points allegedly are values. This test is particularly important when dealing with
experimental situations confronted with marginally small samples. This is not the case in
numerical simulations where the number of stochastic realizations can be very large. Nev-
ertheless, for completeness of our statistical investigation of the numerical data we present
here the goodness of the fit test (Null-Hypothesis testing).

Consider q disjoint and exhaustive intervals (+∞, a1) = I1, (a1, a2) = I2, (a2, a3) = I3,

etc. and then form the numbers

M

∫
Ij

P (τe)dτe = Ej ,
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which can be considered as the expected number of observations which fall in the interval
Ij . Defining φj to be the actual number of observations which are in the interval Ij , the
following random variable is formed:

X2 =
q∑

j=1

(φj − Ej)
2

Ej

.

It is clear that X2 is an effective measure of the discrepancy between the observed occupancy
numbers of the data and the expected occupancy numbers, therefore X2 can be considered
as a measure of the goodness of fit. A critical value based on the X2 statistics can be cal-
culated (the analysis, however, is rather involved), and this value corresponds to the desired
confidence coefficient. If the computed value of X2 were larger than the critical value, the
hypothesis that the observations are values of a random variable with probability density
P (τe) would be rejected.

In general under the assumption that M is large, we can use the χ2
ν (y) chi-square distrib-

ution with ν degree of freedom to calculate the critical value in terms of a significance level
(confidence coefficient) [23].

Due to the fact that our theoretical distribution P (τe) has no free parameters, we have
performed the nonlinear least square test considering K̃ as a fitting parameter in the good-
ness of the fit problem. Nevertheless, none of the test that we have performed shown a
significative variation for the renormalized value of K̃ as was predicted, see after (14). We
have computed the value of X2, the sum of squares of difference between data and fit values
(SSR), the correlation coefficient (R), and the number of degrees of freedom (DOF), using
the OriginPro7.5 software. We perform the nonlinear least square fitting analysis between
our numerical simulations (using the physical parameters as in Fig. 1) and the theoretical
prediction (24), then we got the following significative table

∥∥∥∥∥∥∥∥∥∥∥∥

ε = 10−2 ε = 10−6 ε = 10−10

X2

DOF 0.00333 0.00067 0.00056
R 0.8550 0.9750 0.9647

SSR 4.99 1.21 1.91
DOF 1499 1799 3400

K̃
2 5 500 50000

∥∥∥∥∥∥∥∥∥∥∥∥
.

This is in according with our previous expectations concerning the goodness of the fit. Then
even for large values of the noise amplitude ε the present values of X2 would allow us to
accept the hypothesis as true.
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